Ce théorème permet de choisir le norme que l'on veut sur un evn de dimension finie. Il permet entre autres de voir qu'en dimension finie, "tout est continu". (Gourdon)

Th.1: Dans un K-evn de dimension finie, toutes les normes sont équivalentes.

(formulation de Gourdon).

I. Outils

- Définition d'une norme (Def.1), de normes équivalentes (Def.4).
- Tout ev de dim. finie n admet une base de taille n.
- Définition de la norme ∞
- Relation d'équivalence
- Toute fonction Lipschitzienne est continue.
- Inégalité triangulaire, triangulaire renversée, homogénéité
- Définition de l'Inf, du Sup.
- Dans un K-evn de dim. finie, les parties compactes sont les parties fermées bornées (Th.2)
- Toute fonction continue sur un compact est bornée et atteint ses bornes.

II. Développement (démo de Monier).

Soit E un K-ev de dimension finie n, où $K=\mathbb{R}$ ou \mathbb{C} et $n\in\mathbb{N}$.

L'idée est de profiter de la dimension finie pour se placer dans une base, où l'expression des normes est explicite. Alors E admet au moins une base finie $B = (e_1, ... e_n)$.

Plutôt que de travailler en toute généralité, on va différencier la norme ∞, et montrer que toutes les autres sont équivalentes à celle-là. Alors, par transitivité de la relation d'équivalence, toutes les normes seront équivalentes entre elles.

Notons
$$\sum_{i=1}^{n} x_{i} e_{i} \mapsto \max_{1 \le i \le n} |x_{i}|$$

Soit N une norme sur E, nous allons montrer que $N \sim N_{\odot}$

On va utiliser la continuite de la norme N sur la sphère unité de N_{∞} pour exhiber les constantes qu'exige la définition de normes équivalentes: ce seront l'Inf et le Sup de la norme N sur la sphère unité (compacte) de N_{∞} .

Notons
$$S = \left\{ \left(x_1, ..., x_n \right) \in K^n / \underset{1 \le i \le n}{Max} \left| x_i \right| = 1 \right\}$$
 la sphère unité de (K^n, N_∞) .

Considérons l'application:

$$\nu: K^{n} \to \mathbb{R}$$

$$(x_1,...,x_n) \mapsto N\left(\sum_{i=1}^n x_i e_i\right)$$
 où K^n est muni de la norme usuelle $\|...\|_{\infty}$

→ Montrons que v est continue (en montrant qu'elle est lipschitzienne) sur K¹:

Pour tous $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ de K^n , on a:

$$\underbrace{\left| \nu\left(x\right) - \nu\left(y\right) \right| \leq \nu\left(x - y\right)}_{\text{inégalité triangulaire renversée}} = \underbrace{N\left(\sum_{i=1}^{n}\left(x_{i} - y_{i}\right)e_{i}\right) \leq \sum_{i=1}^{n}N\left[\left(x_{i} - y_{i}\right)e_{i}\right]}_{\text{inégalité triangulaire (sous-additivité)}} = \underbrace{\sum_{i=1}^{n}\left|x_{i} - y_{i}\right|N\left(e_{i}\right)}_{\text{homogénéité}} \leq \underbrace{\left(\sum_{i=1}^{n}N\left(e_{i}\right)\right).\left\|x - y\right\|_{\infty}}_{\text{inégalité triangulaire (sous-additivité)}}$$

En posant $M = \left(\sum_{i=1}^{n} N\left(e_{i}\right)\right) \in \mathbb{R}_{+}^{*}$, on a bien montré que ν est M-lipschitzienne de $\left(K^{n}, \| \ \|_{\infty}\right)$ dans $\left(\mathbb{R}, | \ | \right)$.

Donc ν est continue sur K^n .

→ Utilisons le fait que v soit donc bornée et atteigne ses bornes sur S pour exhiber les constantes dont nous avons besoin:

La sphère-unité S de $(K^n\,{,}N_\infty)$ est fermée bornée, donc compacte (Th.2).

Ainsi, la restriction de v à cet ensemble est bornée et atteint ses bornes.

On peut donc poser:
$$\alpha = Inf v(x)$$
 et $\beta = Sup v(x)$.

Comme $0 \notin S$, et que la norme v est vérifie la condition de séparation, on a: $0 < \alpha \le \beta$.

On a alors: $\forall x \in S$, $\alpha \le v(x) \le \beta$.

Soit
$$x \in E \setminus \{0\}$$
, $x = \sum_{i=1}^{n} x_{i} e_{i}$. On note $x' = (x_{1}, ..., x_{n}) \in K^{n}$.

On a
$$\frac{1}{\|x'\|} . x' \in S$$
, et $N_{\infty}(x) = \|x'\|_{\infty}$.

D'après ce qui précède, on a:
$$\alpha \le v \left(\frac{1}{\|x'\|_{\infty}} . x' \right) \le \beta$$

$$\alpha \leq \frac{1}{\|x'\|_{\infty}} \nu(x') \leq \beta$$

$$\alpha \cdot \|x'\|_{\infty} \le v(x') \le \beta \cdot \|x'\|_{\infty}$$

$$\alpha.N_{\cdot\cdot\cdot}(x) \le \nu(x') \le \beta.N_{\cdot\cdot\cdot}(x)$$

Or
$$N(x) = v(x')$$
, donc: $\alpha.N_{\infty}(x) \le N(x) \le \beta.N_{\infty}(x)$, et ceci pour tout $x \in E \setminus \{0\}$.

L'inégalité est vraie aussi pour x=0.

Finalemant, on a exhibé $(\alpha, \beta) \in \mathbb{R}_{+}^{2}, \forall x \in E, \alpha N_{\infty}(x) \leq N(x) \leq \beta N_{\infty}(x)$

Donc, d'après le Def.4, on a
$$N \sim N_{\infty}$$
.

Ceci est vrai pour toute norme N sur E, donc toutes les normes sur E sont équivalentes.

III. Notes

L'hypothèse $K=\mathbb{R}$ ou \mathbb{C} est capitale, car ce sont des espaces complets.

Contre-exemple en dim° ∞: Cf. Mon.3 p.20.

EXEMPLE:

Les normes $||.||_1$ et $||.||_{\infty}$ sur $E = C([0; 1], \mathbb{R})$ (cf. 1.1.1 pp. 5, 6) ne sont pas équivalentes car, en notant, pour tout n de \mathbb{N}^* , f_n :

$$[0; 1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} n(1-nx) & \text{si } x \in [0; \frac{1}{n}] \\ 0 & \text{si } x \in]\frac{1}{n}; 1] \end{cases}$$

on a
$$\frac{||f_n||_{\infty}}{||f_n||_1} = 2n \xrightarrow[n\infty]{} +\infty.$$

